Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Emerging wearable, assistive, and mobile robots seek to interact with the environment and/or humans in a compliant, dynamic, and adaptable way. Springs are critical to achieving this objective, but the associated increase in volume, mass, and complexity is limiting their application and impact in this rapidly developing field. This article presents a novel rotary spring architecture that is both lightweight and compact. Our two-part spring consists of radially-spaced cantilever beams that interface with an internal, gear-like camshaft. We present the concept and equations governing their mechanics and design. To facilitate broad adoption, we introduce an open-source design tool, which enables the design of custom springs in minutes instead of hours or days. We also empirically demonstrate our design with four test springs and validate the achievement of target spring rates and deflections. Finally, we present several redesigns of existing springs in the robotics literature to demonstrate the wide applicability of our spring architecture.more » « less
-
Challenges associated with current prosthetic technologies limit the quality of life of lower-limb amputees. Passive prostheses lead amputees to walk slower, use more energy, fall more often, and modify their gait patterns to compensate for the prosthesis’ lack of net-positive mechanical energy. Robotic prostheses can provide mechanical energy, but may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best control robotic leg prostheses, but the time and resources required to develop prosthetic hardware has limited their potential impact. Even after research is completed, comparison of results is confounded by the use of different, researcher-specific hardware. To address these issues, we have developed the Open-source Leg (OSL): a scalable robotic knee/ankle prosthesis intended to foster investigations of control strategies. This paper introduces the design goals, transmission selection, hardware implementation, and initial control benchmarks for the OSL. The OSL provides a common hardware platform for comparison of control strategies, lowers the barrier to entry for prosthesis research, and enables testing within the lab, community, and at home.more » « less
-
Challenges associated with current prosthetic technologies limit the quality of life of lower-limb amputees. Passive prostheses lead amputees to walk slower, use more energy, fall more often, and modify their gait patterns to compensate for the prosthesis' lack of net-positive mechanical energy. Robotic prostheses can provide mechanical energy, but may also introduce challenges through controller design. Fortunately, talented researchers are studying how to best control robotic leg prostheses, but the time and resources required to develop prosthetic hardware has limited their potential impact. Even after research is completed, comparison of results is confounded by the use of different, researcher-specific hardware. To address these issues, we have developed the Open-source Leg (OSL): a scalable robotic knee/ankle prosthesis intended to foster investigations of control strategies. This paper introduces the design goals, transmission selection, hardware implementation, and initial control benchmarks for the OSL. The OSL provides a common hardware platform for comparison of control strategies, lowers the barrier to entry for prosthesis research, and enables testing within the lab, community, and at home.more » « less
An official website of the United States government

Full Text Available